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On electron kinetic scales, ions and electrons decouple, and electron velocity shear

on electron inertial length ∼ de can trigger electromagnetic (EM) electron Kelvin-

Helmholtz instability (EKHI). In this paper, we present an analytic study of EM

EKHI in an inviscid collisionless plasma with a step-function electron shear flow. We

show that in incompressible collisionless plasma the ideal electron frozen-in condition

E + ve × B/c = 0 must be broken for the EM EKHI to occur. In a step-function

electron shear flow, the ideal electron frozen-in condition is replaced by magnetic flux

conservation, i.e., ∇× (E+ ve ×B/c) = 0, resulting in a dispersion relation similar

to that of the standard ideal and incompressible magnetohydrodynamics KHI. The

magnetic field parallel to the electron streaming suppresses the EM EKHI due to

magnetic tension. The threshold for the EM mode of the EKHI is (k · ∆Ue)
2 >

ne1+ne2

ne1ne2
[ne1(vAe1 · k)2 + ne2(vAe2 · k)2], where vAe = B/(4πmene)

1/2, ∆Ue and ne are

the electron streaming velocity shear and densities, respectively. The growth rate of

the EM mode is γem ∼ Ωce, the electron gyro-frequency.
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I. INTRODUCTION

The electromagnetic (EM) Kelvin-Helmholtz instability (KHI) is one of the most common

instabilities in nature. It is driven by velocity shear in a single continuous fluid or a veloc-

ity difference across the interface between two fluids. Chandrasekhar’s systematic studies1

showed that the KHI can also occur in incompressible magnetohydrodynamics, although

for a magnetized plasma, magnetic tension parallel to the streaming can suppress the KHI.

Subsequent investigations of KHI in plasma were carried out in the compressible magneto-

hydrodynamics (MHD) framework2–6. Typically, KHI has been considered as a large-scale

fluid instability and its importance on kinetic scales has not been appreciated until recently.

Recent observations and kinetic simulations have found that KHI on kinetic scales plays

an important role in electron acceleration in explosive events, such as planetary magne-

tospheric substorms and solar flares7–16. The instability is driven largely by the shear in

electron streams and hence is called an electron Kelvin-Helmholtz instability (EKHI). In

magnetic reconnection in collisionless plasma, the current sheet shrinks to a width close to

the electron inertial length de before triggering explosive reconnection events. The EKHI is

common in magnetic reconnections that have velocity shear due to the anti-parallel electron

streaming along the magnetic field lines in a manner similar to the MHD KHI15, but the

growth rate is much higher than that of MHD KHI and the wavelength is much shorter. In-

terestingly, the Magnetospheric Multiscale (MMS) observations appears to have discovered

EKHI and the corresponding vortices10,11,16–18.

The EKHI has not been studied analytically as a distinctively different instability from

the MHD KHI, even for the simplest case. The simplest and most commonly cited case is

the EM KHI in an inviscid and incompressible fluid for a step function velocity shear flow1.

If the velocity U1 parallel to the magnetic field B1 and U2 parallel to the magnetic field B2

are separated by an interface zs (Fig.1), the dispersion relation is

ω =
ρ1(k ·U1) + ρ2(k ·U2)

ρ1 + ρ2
± i

ρ1 + ρ2
Ξ1/2; (1)

Ξ = ρ1ρ2(∆U · k)2 − (ρ1 + ρ2)(n1(vA1 · k)2 + n2(vA2 · k)2),

where ∆U ≡ U1 −U2, vA ≡ B/(4πρ)1/2 is the Alfvén velocity and ρ = mini +mene. We

can see that a magnetic field parallel to the flow direction suppresses KHI.

On electron dynamic scales ∼ de, ions and electrons decouple. Ions are demagnetized
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and can be treated as a background, and electron dynamics dominates. At MHD scales the

Ohm’s law and the momentum equation are two independent equations, but on electron

scales the electron momentum equation is also the Ohm’s law19, illustrating the key differ-

ence between the MHD scale and electron scale KHI: the equations that govern the fluid

dynamics on different scales do not have an one-to-one correspondence. On MHD scales, the

ideal Ohm’s law/frozen-in condition and is typically assumed to derive the standard KHI

dispersion relations1, including the one shown in Eq. (1). On electron scales, the overlap of

the momentum equation and Ohm’s law makes it unclear whether we can simply extend the

dispersion relation for ideal MHD EHI to EKHI, in particular, to Eq. (1).

In the paper we derive the dispersion relations for the EM mode of the EKHI in inviscid

and incompressible collisionless plasma with a step function velocity shear flow. We show in

incompressible and inviscid collsionless plasma, the ideal frozen-in condition E+ve×B/c = 0

must be broken for EM EKHI to occur regardless of the functional form of the velocity

shear.The reason is that the frozen-in condition decouples the electron dynamics from the

magnetic and electric fields. In an incompressible step function electron velocity shear flow,

the frozen-in condition is replaced by magnetic flux conservation ∇× (E + ve ×B/c) = 0.

In this case, the magnetic field plays a similar role to that in Eq. (1) and the electron

Alfvén velocity vAe = B/(4πmene)
1/2 replaces the role of the MHD Alfvén velocity vA. The

threshold for the EM EKHI to occur is (k ·∆Ue)
2 > ne1+ne2

ne1ne2
[ne1(vAe1 · k)2 + n2(vAe2 · k)2],

where ∆Ue and ne are the electron streaming velocity shear and densities, respectively. The

growth rate is ∼ Ωce, the electron gyro-frequency.

II. ELECTRON DYNAMIC EQUATIONS AND THE STEP FUNCTION

ELECTRON SHEAR FLOW

On electron dynamic scales ranging from the electron Debye length λDe ≡ vte/ωpe to

the electron inertial length de ≡ c/ωpe, where vte is the electron thermal speed and ωpe is

the electron plasma frequency, electrons and ions are no longer strongly coupled. Electrons

dominate the high-frequency dynamics and ions behave like a stationary background due to

significantly larger mass. As a result, electrons carry most of the current and are responsible

for charge separation. Thus on electron dynamical scales we neglect the ion dynamics. We

assume that the plasma is inviscid and incompressible collisionless and the electron fluid
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equations are

∂tne +∇ · (neve) = 0; (2)

mene(∂t + ve · ∇)ve + ene(E+
ve

c
×B) +∇Pe = 0; (3)

∇ · ve = 0, (4)

and we assume that the electron pressure is a scalar Pe, the system is coupled with Maxwell

equations,

∇ · E = 4πe(ni − ne); (5)

∇ ·B = 0; (6)

∇× E = −1

c
∂tB; (7)

∇×B = −4πene

c
ve, (8)

where we neglect the temporal variation of the electric field in Ampere’s law. The spatial

scale of the inductive electric field is ∼ de the electron inertial length, and the time variation

of the magnetic field is ∼ Ωce ≡ eB/mec the electron gyro-frequency, thus in the Faraday’s

law (∆E/∆t)/(∆B/∆t) ∼ vAe/c ≪ 1, where vAe ≡ B/(4πmene)
1/2 is the electron Alfvén

wave speed. Consequently the electric displacement ∆E/∆t is negligible compared to the

electron current density in Ampere’s law. The current density on electron kinetic scales can

be approximated as j ≈ je = −eneve and the ions’ contribution in Ampere’s equation (8) is

neglected.

Following Chandrasekhar1, we explore both the EM mode EKHI for the simplest case as

shown in Fig. 1: two uniform electron fluids in relative horizontal motion along x separated

by a horizontal boundary at z = 0 where the electron velocitiesU1 andU2 are discontinuous.

U0 =

U1x̂, z > 0

U2x̂, z < 0
(9)

On both sides of the boundary we assume the plasma is neutral but with different plasma

densities. We assume the initial electron density is n1 and n2,

ne0 =

n1, z > 0

n2, z < 0
(10)
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FIG. 1. An illustration of the coordinate system. The two uniform magnetic fields B1 and B2 are

aligned along the stream velocity, and their directions can be ether parallel or anti-parallel. We

will show that the EKHI depends only on the square of the magnetic field and is independent of

their directions.

The initial electric field E0 = 0, since the initial densities of electrons and ions are equal,

i.e. ne0 = ni0.

The magnetic field B1 and B2 are uniform. In particular, we will show that both the

dispersion relations of EM in such a velocity shear configuration are independent of whether

B1 and B2 are parallel or anti-parallel.

B0 =

B1x̂, z > 0

B2x̂, z < 0
(11)

With this configuration, an out-of-plane component of the magnetic field By is also

present, which is proportional to z, i.e. By ∝ z. When approaching the boundary in-

terface z = 0, By approaches zero. We neglect the By component in this study since the

EKHI occurs in the neighborhood of z = 0. The initial pressure P0 is determined by the

initial equilibrium P0 +B2
0/8π = constant on both sides of z = 0.
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III. ELECTROMAGNETIC ELECTRON KELVIN-HELMHOLTZ

INSTABILITY

A. The Breaking of the ideal Frozen-in Condition in EM EKHI in

Incompressible Plasma

In the following we show that in the incompressible plasma, the ideal electron frozen-in

condition E+ ve ×B/c = 0 must be broken for EM EKHI to occur.

When the electrons are frozen-in with the magnetic field, the electron momentum equation

(3) reduces to:

E+ ve ×B/c = 0; (12)

The linearization of Eq. (5) - (8) gives

∇2δE+∇∇ · δE = −4π

c2
∂tδje, (13)

The EM EKHI wavelength is ∼ de, thus Eq. (13) gives

ω2
peδE ∼ 2π∂tδje. (14)

From the electron momentum equation (3), we can see that one of the requirements for

the ideal electron frozen-in condition to be satisfied is

mene0(∂tδve + ve · ∇δve) ≪ ne0eδE, (15)

This leads to

2π∂tδje ≪ ω2
peδE. (16)

This result contradicts equation (14). Therefore, in incompressible plasma, the ideal electron

frozen-in condition prevents the EM EKHI from occurring. This conclusion is consistent with

the fact that the frozen-in condition decouples the magnetic field from the electron fluid

dynamics. This decoupling occurs because the frozen-in condition separates the electron

momentum equation from the magnetic and electric fields. As a result, the growth rate of

the instability is only determined by the electron velocity shear, similar to the fluid Kelvin-

Helmholtz Instability. This is due to the fact that the electron Ohm’s law is equivalent to

the momentum equation.
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B. The Threshold and Growth Rate of EM EKHI in a Step Function

Incompressible Electron Shear Flow

In the following, we neglect the subscript e for electrons. Here we derive the dispersion

relation for EM EKHI in step function incompressible electron shear flows as shown in the

Fig. (1).

In Fig. (1), the initial velocity shear is uniform at the both sides of the interface z = 0

and is symmetric to the out-of-plane y-direction, thus this is a two-dimensional flow problem

in inviscid plasma, the vorticity is conserved. The initial vorticity is zero and is conserved

at z ̸= 0, i.e.

∇× v = 0. (17)

Incompressibility ∇ · v = 0 and Eq.(17) at z ̸= 0 give

∇2v = 0. (18)

From the above analysis, we can see that for the EM mode, the continuity equation (2) and

Poisson’s equation (5) are replaced by the Laplace equation Eq. (18).

The magnetic field-induced electric field E impacts the electron momentum equation (3)

through Faraday’s law, i.e., Eq. (7). Taking the curl of Eq. (3), at z ̸= 0 we obtain

∇× (E+
v

c
×B) = 0. (19)

However, we can check that Eq.(19) is also satisfied at z = 0.

Equation (19) can be considered as an extension of the ideal electron frozen-in condition

in an inviscid and incompressible electron fluid. The ideal electron frozen-in condition E+

v
c
×B = 0 is the simplest (trivial) case of Eq. (19). In incompressible plasma, the EM EKHI

requires the breaking of the ideal electron frozen-in condition and magnetic flux conservation

is the simplest replacement.

Using Faraday’s law, ∇ ·B = 0 and ∇ · v = 0, we rewrite Eq. (19) as

∂tB = B · ∇v − v · ∇B. (20)

Eq. (20) connects the velocity and magnetic field. We can rewrite the electron momentum

equation (3) using Ampere’s Law, i.e., Eq. (8) to obtain

mn(∂t + v · ∇)v + enE− 1

4π
B · ∇B+∇P ∗ = 0, (21)
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where

P ∗ = P +
B2

8π
(22)

is the total pressure including magnetic pressure.

Eqs. (18), (20), and (21) form a complete set of equations that describe the EM mode

of EKHI in incompressible and inviscid plasma for the configuration in Fig. 1. We linearize

these equations to obtain

∇2δv = 0; (23)

∂tδB−B0 · ∇δv +U0 · ∇δB+ δv · ∇B0 − δB ·U0 = 0; (24)

mn0(∂t +U0 · ∇)δv +mn0δv · ∇U0 + en0δE− 1

4π
B0 · ∇δB− 1

4π
δB · ∇B0 +∇δP ∗ = 0,

(25)

where we have used v = U0 + δv and n = n0 + δn; U0 and n0 represent the initial velocity

U1 or U2 and density n1 or n2 respectively. We also used E = δE due to E0 = 0, and

B = B0 + δB and P ∗ = P ∗
0 + δP ∗, and

P ∗
0 = P0 +

B2
0

8π
, (26)

δP ∗ = δP +
B0 · δB

4π
. (27)

B0 and P0 represent the initial magnetic field and pressure, respectively. E0 = 0 leads to

the term E0δn vanishes and as a result, the density discontinuity at z = 0 does not affect

the linearization.

Perturbations are continuous in the xy plane and discontinuous at z = 0 in the z direction.

We consider perturbations of the form δf(z)ei(kxx+kyy−ωt). As we demonstrated in Section

II, the ratio (∆E/∆t)/(∆B/∆t) ∼ vAe/c ≪ 1, indicating that the influence of the induced

electric field is insignificant. As a result, the induced electric field is not a determining

factor in the growth rate of the EKHI. Since we neglected ∂tE in Ampere’s law, the induced

electric field is also neglected when we take the time derivative of the linearized equations

(25). Then the equations (23) and (24), and the time derivation of equation (25) can be

approximated as follows:

The velocity Laplace equation is valid at z ̸= 0,

(∂2
z − k2)δv = 0, (28)
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and the magnetic flux conservation and the momentum equation are valid in the whole space

−iΩδB− iB0 · kδv + δv · ∇B0 − δB · ∇U0 = 0; (29)

−imn0Ωδv +mn0δv · ∇U0 −
i

4π
B0 · kδB− 1

4π
δB · ∇B0 +∇δP ∗ = 0, (30)

where Ω = ω − k ·U0 and k = kxx̂+ kyŷ.

The component equations of Eq.(30) are

mn0∂tδvx +mn0U0∂xδvx +mn0δvz∂zU0 −
1

4π
B0∂xδBx −

1

4π
δBz∂zB0 + ∂xP

∗ = 0; (31)

mn0∂tδvy +mn0U0∂xδvy −
1

4π
B0∂By + ∂yP

∗ = 0; (32)

mn0∂tδvz +mn0U0∂xδvz −
1

4π
B0∂Bz + ∂zP

∗ = 0. (33)

We multiply both sides of Eq. (31) and Eq. (32) by ikx and iky respectively, then sum,

and make use of ∇ · δv = 0 and ∇ · δB = 0 to obtain

k2P ∗ = imn0Ω∂zδvz + i
k ·B0

4π
∂zδBz + ikxmn0∂zU0δvz − i

kx
4π

∂zB0δBz. (34)

The z component of Eq.(29) gives

δBz = −kxB0

Ω
δvz. (35)

On inserting Eq.(34) into Eq.(33) and using Eq.(35), we obtain

−mn0k
2Ωδvz +

k2k2
xB

2
0

4πΩ
δvz + ∂z[mn0Ω∂zδvz −

k ·B0

4π
∂z(

k ·B0

Ω
δvz)

+ kxmn0∂zU0δvz +
k ·B0

4πΩ
∂z(k ·B0)δvz] = 0. (36)

Eq. (28) together with the boundary conditions δvz = 0 at z = ∞ gives the general

solution

δvz ∝ ei(kxx+kyy−ωt)e−kz, z > 0, (37)

δvz ∝ ei(kxx+kyy−ωt)ekz, z < 0. (38)

We can then write δf(z) as a function proportional to e−k|z|. δv is not continuous across

z = 0. But δv = dδl/dt = −iΩδl, where δl is the displacement of the any fluid element on

the interface which is continuous at the z = 0 plane, thus we can rewrite δv as

δv = δv0Ωe
−k|z|, (39)
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where δv0 is the velocity perturbation at z = 0.

On Integrating Eq. (36) over the interface z = 0 from 0 − ϵ to 0 + ϵ, where ϵ → 0 and

applying the solution δvz for the two regions, we obtain

n1(Ω
2
1 − (vAe1 · k)2) + n2(Ω

2
2 − (vAe2 · k)2) = 0, (40)

where vAe1 = (B2
1/4πmn1)

1/2B1/B1, vAe1 = (B2
2/4πmn2)

1/2B2/B2, Ω1 = ω − k · U1 and

Ω2 = ω−k ·U2. On rearranging Eq.(40), we obtain the dispersion relation for the EM mode

of EKHI as

ω =
n1(k ·U1) + n2(k ·U2)

n1 + n2

± i

n1 + n2

[n1n2(∆U·k)2−(n1+n2)(n1(vAe1·k)2+n2(vAe2·k)2)]1/2,

(41)

where ∆U = U1−U2. We can see that the threshold for the occurrence of EM mode in the

EKHI is

(k ·∆U)2 >
n1 + n2

n1n2

[n1(vAe1 · k)2 + n2(vAe2 · k)2]. (42)

For U ≫ vAe, we can neglect the magnetic field, then for ∆U ∼ vAe, and 1/k ∼ de,

the growth rate γem is about γem ∼ Ωce, is the electron gyro-frequency. For a special but

common case where n1 = n2 and B1 = B2, the threshold is

∆U > 2vAe. (43)

If the electron velocities on the two sides are antiparallel U1 = −U2, the real frequency

of the EKHI wave ωr is zero, i.e. ωr = 0 and U > vAe.

Comparing the dispersion relations of the EM mode of the EKHI in Eq. (41) and the

dispersion relation of the ideal incompressible MHD KHI in Eq. (1), we find that Eq. (41) is

the same as Eq. (1) if we replace the electron Alfveń wave speed vAe with the Alfveń wave

speed vA. In both cases, magnetic tension resists the development of the instability and

the pressure and magnetic pressure supports the formation of vortices. However, the EM

mode of the EKHI is not a direct extension of ideal incompressible MHD KHI, in that the

dynamics is completely different. On the incompressible MHD scale, the plasma is frozen-in

with the magnetic field E + v × B/c = 0 where v is the MHD velocity. However, on the

electron dynamic scale, the frozen-in condition must be broken for the EM EKHI to occur in

incompressible plasma. In the simplest case magnetic flux conservation ∇×(E+ve×B/c) =

0 replaces E+ ve ×B/c = 0. This condition allows both the occurrence of electron heating
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and electron motions that are not completely decoupled from the magnetic field, although

constrained, and explains why the magnetic field increases the threshold of the EM mode

of the EKHI, in particular a uniform magnetic field parallel to the direction of electron

streaming suppresses the EM mode of the EKHI thanks to the magnetic tension.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the threshold criteria and growth rates of the electro-

magnetic (EM) electron Kelvin-Helmholtz instabilities for step function velocity shear flows

using an electron fluid model coupled with Maxwell’s equations in an inviscid and collision-

less plasma. Unlike the KHI in ideal incompressible magnetohydrodynamics (MHD), we

show that the ideal electron frozen-in condition must be broken for the EM EKHI to occur

in incompressible plasma. Similar to the EM KHI in incompressible step function velocity

shear flows, the magnetic tension parallel to the velocity shear inhibits the development of

the EM EKHI and thus the electron fluid velocity shear must be larger than the electron

Alfvén speed, i.e., ∆U > vAe to trigger the instability. The wavelength of the EM mode of

the EKHI is of the order of the electron inertial length de and the growth rate is of the order

of the electron gyro-frequency γem ∼ Ωce.

The dispersion relations for the EM mode and the relevant thresholds criteria and growth

rates can be summarized as follows.

General Dispersion Relation:

ω = ωr ± iγem,

ωr =
n1(k ·U1) + n2(k ·U2)

n1 + n2

,

γem =
1

n1 + n2

[n1n2(∆U · k)2 − (n1 + n2)(n1(vAe1 · k)2 + n2(vAe2 · k)2)]1/2.

Threshold :

(k ·∆U)2 >
n1 + n2

n1n2

[n1(vAe1 · k)2 + n2(vAe2 · k)2].

For a simple but common case where n1 = n2 and B1 = B2, the threshold becomes

∆U > 2vAe.

If the velocity shear is antiparallel, i.e., U1 = −U2, the real frequency of the EKHI wave
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is

ωr = 0.

We have presented an electron fluid analytic solution for EKHI, which is more general

than the qualitative result presented by Fermo, Drake, and Swisdak 20 . In their study, Fermo

et al. estimated the threshold for EKHI by assuming that the growth rate of EKHI for a

wavenumber of k ∼ 1/de is approximately γem ∼ ∆U/de. This estimate is an extension

from the growth rate of KHI for weak magnetic fields in uniform plasma. Additionally, they

assumed that the growth rate of EKHI should exceed the whistler frequency. With these

assumptions, they obtained the threshold for EKHI as ∆U > vAe/2, with the growth rate

γem = Ωce/2 - which is an estimate for the special case of γem that we presented above.

For a weak magnetic field and a uniform plasma density, our result allows us to approxi-

mate γem = ∆U/(2k). In this case, the threshold for EKHI to occur is theoretically ∆U > 0.

However, if we consider the growth rate to be γem ∼ Ωce/2 and 1/k ∼ de, we obtain the

threshold ∆U = vAe/2. While this yields the same threshold for the same growth rate as

a special case, we can observe that it is a coincidence. However, this may imply that the

condition for EKHI to suppress whistler waves is for the growth rate of the EKHI to be

larger than the typical whistler wave frequency—This point needs more verifications.

In this paper, we only consider step function shear flows in inviscid and incompressible

plasma. The incompressibility leads to the infinite acoustic wave speed and thus the re-

sults obtained in this paper are suitable for low Mach number. Similar to MHD KHI, the

compressibility, non-uniform velocity shear (non-zero vorticity) and density can impact the

dispersion relation of EKHI. How compressibility and non-zero vorticity affect the develop-

ment of EKHI requires further investigations.
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